нашего примера:


нашего примера: U1=(1, 6, 7, 8), U2=(1, 2, 5, 8), U3=(2, 3, 5), U4=(3, 4), U5=(2, 3, 4, 5), U6=(5, 6), U7=(6, 7), U8=(7,8). Видим, что U4?U5. Из этого следует, что 5-ю строку можно не рассматривать, поскольку любое множество столбцов, покрывающее 4-ю строку, должно покрывать и 5-ю. Четвертая строка доминирует над пятой. 3.7.5. Метод решения задачи о наименьшем разбиении Попытаемся осознать метод решения задачи, рассматривая, как обычно, пример. У нас есть ориентированный граф, его матрица смежности и транспонированная матрица смежности с единичными диагональными элементами. Исследуем структуру матрицы А*. Нас интересует, какие столбцы содержат единицу в первой строке, какие столбцы содержат единицу во второй строке и не содержат в первой и так далее. С этой целью можно было бы переставлять столбцы в матрице А*, но оставим ее “в покое”. Будем использовать дополнительную матрицу Bl, ее тип: type Pr=array[1..MaxN,1..MaxN+1] of integer; var Bl:Pr; , где MaxN - максимальная размерность
Индекс
Элементарные функции    Линейные уравнения    Нелинейные уравнения    Случайные числа


Hosted by uCoz